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ABSTRACT
Text-to-Speech (TTS) and Voice Conversion (VC) models have ex-
hibited remarkable performance in generating realistic and natural
audio. However, their dark side, audio deepfake poses a significant
threat to both society and individuals. Existing countermeasures
largely focus on determining the genuineness of speech based on
complete original audio recordings, which however often contain
private content. This oversight may refrain deepfake detection from
many applications, particularly in scenarios involving sensitive in-
formation like business secrets. In this paper, we propose SafeEar,
a novel framework that aims to detect deepfake audios without
relying on accessing the speech content within. Our key idea is
to devise a neural audio codec into a novel decoupling model that
well separates the semantic and acoustic information from audio
samples, and only use the acoustic information (e.g., prosody and
timbre) for deepfake detection. In this way, no semantic content will
be exposed to the detector. To overcome the challenge of identifying
diverse deepfake audio without semantic clues, we enhance our
deepfake detector with real-world codec augmentation. Extensive
experiments conducted on four benchmark datasets demonstrate
SafeEar’s effectiveness in detecting various deepfake techniques
with an equal error rate (EER) down to 2.02%. Simultaneously, it
shields five-language speech content from being deciphered by both
machine and human auditory analysis, demonstrated by word error
rates (WERs) all above 93.93% and our user study. Furthermore,
our benchmark constructed for anti-deepfake and anti-content re-
covery evaluation helps provide a basis for future research in the
realms of audio privacy preservation and deepfake detection.
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Figure 1: SafeEar framework decouples speech samples into
semantic and acoustic information. By using acoustic-only
information, SafeEar achieves reliable deepfake detection
while protecting user content privacy from recovery attacks.

1 INTRODUCTION
Recent advances in text-to-speech (TTS) and voice conversion
(VC) technologies have enabled the generation of highly realistic
and natural-sounding speech, imitating specific individuals say-
ing things they never actually said. However, such technologies
have been misused to create audio deepfakes, posing significant
security threats. For instance, deepfakes disseminated on the In-
ternet can manipulate public opinion, serving purposes like propa-
ganda, defamation, or terrorism [46, 65]. Besides, audio deepfake
fraud in calls and virtual meetings, including a notable UK case
where $35 million was stolen using a cloned CEO’s voice [9], has
financially affected 7. 7% individuals, according to a 2023 McAfee
survey [45]. These have spurred the development of diverse audio
deepfake detection models, designed to discern synthetic from gen-
uine voices and promptly alert potential victims. However, existing
works [12, 31, 44, 67, 75] typically take audio waveforms or spec-
tral features (e.g., LFCC [54]) as inputs, which require accessing
complete speech information. These approaches, while efficient,
raise substantial privacy concerns due to the potential exposure of
private speech content, particularly in virtual communications that
involve user privacy like business secrets or medical conditions [26].
Thus, despite current detectors’ utility in thwarting deepfakes, there
is natural hesitancy in using them due to the risk of content leakage.

In this paper, we introduce SafeEar1, a novel framework designed
to effectively detect audio deepfakes while preserving content pri-
vacy. As shown in Figure 1, the key idea of SafeEar is to decou-
ple speech into semantic and acoustic information. This approach
enables reliable deepfake detection using processed acoustic in-
formation while preventing potential adversaries from accessing
1Our demo, code, and dataset are available on https://letterligo.github.io/SafeEar/.
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the semantic content, even if they employ advanced automatic
speech recognition (ASR) models or human auditory analysis. Thus,
SafeEar is particularly suited for third-party audio service scenarios
where an honest-but-curious server might offer reliable deepfake
detection service, yet unethically eavesdrops user speech content.
For detection services operated on trusted local devices, the SafeEar
framework also provides an extra layer of protection for user pri-
vacy.

To our knowledge, this is the first work to develop a content
privacy-preserving audio deepfake detection framework. SafeEar
is inspired by the intuition that audio deepfakes aim to replicate
a speaker’s timbre and prosody disregarding the speech content.
In contrast, speech recognition systems focus on extracting se-
mantic content, independent of the speaker-related features. This
dichotomy indicates that these two tasks may rely on mutually
independent features, suggesting the potential for designing an
effective audio deepfake detector analyzing only acoustic informa-
tion without exposing semantic content. However, materializing
SafeEar is challenging in two aspects.

How to protect content privacy from recovery by adversaries?
SafeEar aims to safeguard speech content privacy against both
machine-based and human auditory analysis. Prior works using
adversarial examples [10, 40] for ASR model disruption have shown
limited effectiveness against human listeners. SafeEar tackles this
by decoupling speech into semantic and acoustic tokens and pro-
vides only acoustic tokens to the detector, where tokens mean
the discrete representations of information [72]. Consequently, al-
though content recovery adversaries can receive a series of acoustic
tokens, the lack of semantic clues hinder their recovery of under-
standable content. This approach, along with randomly shuffling
the acoustic tokens, further obfuscates the contextual patterns that
both machine-based and human auditory analysis rely on for con-
tent comprehension [42]. SafeEar also defends against a range of
adversaries who might use decoders to transform acoustic tokens
into speech waveforms and analyze them.

How to deliver accurate deepfake detection merely based on acous-
tic tokens? The challenge lies in the absence of semantic information
and the disrupted acoustic patterns (e.g., timbre and prosody) due to
shuffling. These content protection strategies may complicate the
identification of clues necessary to differentiate genuine from syn-
thetic audio. We address this by developing a Transformer-based
detector and identifying its optimal number of multi-head self-
attention (MHSA) [73] for processing acoustic-only inputs. This
adaptation allows the deepfake detector to better capture dynamic
spatial weighting and local-global feature interactions. Addition-
ally, deepfakes can occur across various communication platforms,
which can degrade the deepfake-and-genuine gap due to the ef-
fects of codec compression like G.722 [47] and OPUS [71] during
audio transmission. To address this, we strategically integrate sev-
eral representative codecs into our training pipeline to counteract
the disruptive effects of codecs, ensuring SafeEar’s accuracy and
reliability across diverse real-world scenarios.

We construct a comprehensive benchmark to compare the perfor-
mance of SafeEar and other systems in deepfake detection and con-
tent privacy protection. This benchmark comprises four datasets,
including three standard datasets—ASVspoof 2019 [76], ASVspoof
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Figure 2: Mainstream solutions on audio deepfake detection:
pipeline and end-to-end detector.

2021 [81] for deepfake detection, Librispeech [55] for content protec-
tion, and CVoiceFake we established for both aspects. CVoiceFake
is a multilingual deepfake dataset sourced from the CommonVoice
dataset [4] with over 1.25 million bonafide and deepfake voice
samples in five languages. CVoiceFake also includes ground-truth
textual transcriptions, making it also an ideal benchmark against
content recovery attacks. To our knowledge, CVoiceFake fills the
gap in cross-language deepfake datasets [87], and we hope it can
serve as a basis to assist future research in this area.

Based on the above benchmark datasets, our extensive experi-
ments focus on two critical tasks: deepfake detection and content
protection. For the deepfake detection task, we benchmark SafeEar
against eight baseline detectors across three deepfake datasets,
which feature a variety of deepfake speech samples generated us-
ing popular TTS and VC technologies. Specifically, SafeEar achieves
comparable performance with top-tier deepfake detectors based
solely on acoustic information, with an optimal equal error rate
(EER) as low as 2.02%. Regarding the content protection task, we
evaluate SafeEar’s efficacy against three levels of content recov-
ery adversaries: naive (CRA1), knowledgeable (CRA2), and adaptive
(CRA3), thwarting all content recovery attempts with word error
rates (WERs) above 93.93%. SafeEar also demonstrates robustness
in safeguarding speech content in English and four extra unseen
languages, suggesting its potential for wider application. The bench-
mark and experiment audio samples can be found on our demo
website [1].

Summary of Contributions. Our technical and experimental
contributions are as follows:

• To our knowledge, we make the first attempt to investigate and
validate the feasibility of achieving audio deepfake detection
while preserving speech content privacy.

• We propose SafeEar, a novel privacy-preserving deepfake detec-
tion framework that devises a neural audio codec into a semantic-
acoustic information decoupling model, ensuring content pri-
vacy. We further develop an advanced detector that achieves
effective deepfake detection with only acoustic information.

• We construct CVoiceFake and establish a comprehensive bench-
mark focusing on the deepfake detection and content privacy
preservation tasks. Our experiments demonstrate the effective-
ness of SafeEar in detecting deepfake audio under various impact
factors and in thwarting multiple content recovery attacks.
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2 BACKGROUND
2.1 Audio Deepfake Generation
Deepfake audios are generated using either text-to-speech (TTS) or
voice conversion (VC), where the deployment of deep neural net-
works (DNN) gradually becomes a dominant method that achieves
much better voice quality.

Text-to-Speech: TTS has a long history and recently advances
remarkably due to the evolution of deep learning techniques [21,
38, 90]. A typical TTS system can be decomposed into three main
components: (1) A frontend text analysis module [68] that con-
verts character into phoneme or linguistic features; (2) An acoustic
model [38, 61] that generates speech features such as Mel filter
banks (FBank) or Mel-frequency cepstrum coefficient (MFCC), from
either linguistic features or characters/phonemes; (3) A vocoder
model [23, 36, 49] that generates waveform from either linguistic
features or acoustic features. Additionally, recent progress such
as fully end-to-end models [34, 60] that directly convert charac-
ters/phonemes into waveform, are able to generate high quality
audio even close to the human level.

VoiceConversion:VC aims to change some properties of speech,
such as speaker identity, emotion, and accents, while reserving the
semantic content [63]. Unlike TTS, the inputs to the VC system is
another audio waveform instead of text. VC systems can be roughly
categorized into two types regarding the requirement of training
data: (1) parallel training data systems require the speech of the
same semantic content to be available from both source and target
speakers [69]; (2) non-parallel training data systems reduce the
difficulty of data collection, as no parallel training data is needed.
In this scenario, a trainable module designed for disentangling
speaker-related features from speech features [33] is necessary to
extract pure semantic information, which can be composed with the
identity information of other speakers to realize voice conversion.

2.2 Audio Deepfake Detection
Audio deepfake detection is a critical machine learning task that
focuses on identifying real utterances from fake ones. An increas-
ing number of attempts [31, 67, 87] have been made to further the
development of audio deepfake detection. As shown in Figure 2,
existing mainstream studies on audio deepfake detection can be
categorized into two types of solutions: pipeline detector and end-
to-end detector. The pipeline solution [12, 54, 75], consisting of
a frontend feature extractor and backend classifier is well estab-
lished. It extracts spectral features like MFCC and LFCC [54, 75],
or token-level Wav2Vec2 features [80]. In recent years, end-to-end
approaches [31, 67] have attracted more and more attention, which
integrates the feature extraction and classification into a single
model. This unified approach optimizes the model using raw audio
waveforms alongside corresponding real-or-fake labels. SafeEar
lies in the pipeline detector group, which fills a gap in privacy-
preserving deepfake detection methods.

2.3 Speech Representation Decoupling
Speech information can be roughly decomposed into three com-
ponents: content, speaker, and prosody [43]. Content is seman-
tic information, which can be expressed using text or phonemes.

Speaker and prosody features constitute the acoustic information.
The former reflects speaker’s characteristics such as timbre and
volume, while prosody involves intonation, stress, and rhythm of
speech, reflecting how the speaker says the content. Prior speech
representation disentanglement methods mostly leverage a dual-
encoder strategy [58], where speech is fed into parallel content and
speaker encoders to obtain distinct representations. However, this
strategy heavily relies on prior knowledge of given languages and
speakers and potentially overlooks certain speech information like
prosody, which may result in suboptimal decoupling, potentially
leading to content leakage or insufficient detection clues. To tackle
this issue, SafeEar presents a novel neural audio codec-based decou-
pling model that hierarchically decouples speech into semantic and
acoustic tokens. It enables content privacy-preserving deepfake
detection solely based on acoustic information. In-depth details of
our design are elaborated in §4.

3 THREAT MODEL
In this section, we introduce the application scenarios relevant to
the SafeEar framework, and identify two malicious entities posing
threats to users, i.e., the deepfake adversary (DA) and the content
recovery adversary (CRA).

3.1 Adversary Models
Application Scenarios. Third-party audio services have be-

come popular in the market because of their advantages in pro-
viding specialized functionalities and flexible usage. However, the
privacy concern of sharing raw audio with a third party is one of
the primary factors preventing users from fully trusting these ser-
vices, even if the service provider claims to not collect any data. For
example, a deepfake detection service provider could be an honest-
but-curious content recovery adversary (CRA), detecting deepfake
audio to alert victims timely while unethically eavesdropping on
conversation content.

The SafeEar framework is designed to relieve such privacy con-
cerns, especially in using third-party audio services. Its frontend
decoupling model can be examined and deployed by an entity that
is already trusted in processing the raw audio data (e.g., the user’s
smartphone). Meanwhile, the backend deepfake detector can be op-
erated by any untrusted entities (i.e., detection service providers). In
this way, both the detection service and potential adversaries gain
access only to the privacy-preserving acoustic tokens, rather than
raw audio or unprotected features, which could be easily exploited
to recover speech content.

Deepfake Adversary (DA). The DA’s goal is to generate au-
dio that convincingly impersonates real human speakers (TTS) or
mimics individuals familiar to the victim (VC). Employing sophis-
ticated TTS and VC models, the adversary can acquire multiple
speech samples from a target, using them for voice cloning or
create realistic speech for various roles, such as customer service
representatives. Moreover, The DA may engage in fraudulent ac-
tivities on widely used instant communication platforms globally.
This introduces two primary detection challenges: (1) Variations in
audio codecs across transmission channels can result in different
degrees of compression for genuine and deepfake voices, blurring
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the distinction between them. (2) Deepfake audio in different lan-
guages may present unique detection patterns. Our work does not
consider DAs that create adversarial examples to bypass detectors,
as it is typically impractical for adversaries to gain knowledge of
proprietary, black-box detection systems. Extensive experiments
on deepfake detection using three benchmark datasets are detailed
in §6.

Content Recovery Adversary (CRA). The CRA seeks to ex-
tract intelligible speech content from the acoustic tokens decoupled
and shuffled by SafeEar. Such an adversary could be an honest-
but-curious deepfake detection service provider, with prior knowl-
edge of SafeEar’s algorithm. While adversaries receive only the se-
quences of discrete acoustic tokens, they are capable of reconstruct-
ing this feature sequence into speech waveforms using SafeEar’s
decoder. Adversaries may also train state-of-the-art ASR models
from scratch, and utilize off-the-shelf commercial or local ASR mod-
els, to convert the received acoustic tokens into coherent text, or
employ human auditory analysis for content recovery. However,
they cannot access semantic tokens as SafeEar does not provide this
data. We conduct a comprehensive evaluation of SafeEar against
three levels of content recovery adversaries, as elaborated in §7.

3.2 Defense Goal
To address the growing concern of deepfake audio in virtual commu-
nications, users require detectors to provide reliable alerts. However,
there is a natural hesitancy in using them due to the risk of speech
content leakage. SafeEar aims to alleviate this concern by extracting
the content-irrelevant features, which can safeguard user content
privacy while being suitable for effective detection. SafeEar’s design
shall meet two key requirements:

Deepfake Detection: The deepfake detection model in SafeEar
should be finely tuned to work with content-irrelevant features,
guaranteeing reliable and accurate detection of deepfake audio.

Content Protection: Features extracted by SafeEar should be
resistant against content recovery attempts by CRAs, regardless of
whether they employ machine-based or human auditory methods.

4 DESIGN DETAILS
4.1 Overview of SafeEar

Key Idea. We aim to propose a framework that achieves two
seemingly contradictory objectives: effective deepfake detection
and prevention of any attempts at content recovery. Our key idea
is to design a novel frontend feature extractor that can decompose
speech information into mutually independent discrete represen-
tations, i.e., semantic and acoustic tokens, where only the latter
being analyzed by subsequent deepfake detectors. Such acoustic
tokens can enable effective deepfake detection, but nullify recovery
attempts by both machine and human auditory analysis.

Intuition Behind SafeEar. The idea of SafeEar is rooted in a
critical insight: audio deepfake technology primarily concentrates
on capturing the unique vocal attributes of a target speaker, such
as timbre, loudness, rhythm, and pitch, which constitute acoustic
information [43]. However, this technology typically overlooks
the actual speech content. In fact, several studies have already
confirmed the significance of acoustic features in detecting deepfake
audios, e.g., timbre [11], pitch and loudness [37]. In contrast, the
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Figure 3: Overview of the SafeEar framework. In the infer-
ence phase, we just need to remove ④.

core of speech comprehension, both in humans and as modeled in
ASR systems, lies in accurately transcribing the semantic content,
irrespective of variations in the speaker’s acoustic patterns [86]. The
above understanding leads us to believe that developing a deepfake
audio detector merely based on acoustic information is feasible.
Acoustic information’s devoid of semantic content exploitable by
adversaries, inherently preserves content privacy.

Challenges. To realize SafeEar, we faces two challenges. Chal-
lenge 1: How to design a novel decoupling module that well extracts
and secures acoustic tokens, protecting speech content from recov-
ery by machine and human auditory analysis? Challenge 2: How to
ensure reliable detection against various real-world deepfake audio,
despite relying only on acoustic tokens?

Methodology Outline. As shown in Figure 3, to address Chal-
lenge 1, we carefully devise a neural codec architecture (§4.2, ① in
Figure 3) to flexibly decompose the audio signal X ∈ R1×𝑇 into se-
mantic tokens S ∈ R𝐶×𝑇𝑛 and acoustic tokens A ∈ R7𝐶×𝑇𝑛 , where
𝐶 denotes the token dimension, and 𝑇 and 𝑇𝑛 represent the length
of the audio and token, respectively. We combine a bottleneck and
shuffle layer (§4.3, ② in Figure 3) to secure the tokens asA ∈ R𝐶×𝑇𝑛 ,
thereby the original content cannot be reconstructed. For Challenge
2, we finely tune our backend detector (§4.4, ③ in Figure 3) with
optimal number of self-attention heads, as well as mimicking real-
world codec transformation from X to X∗ for the detector training
(§4.5, ④ in Figure 3).

4.2 Codec-based Decoupling Model (CDM)
Inspired by the recent paradigm in neural audio codecs like En-
codec [17] and VALL-E [74], which leverage the multi-layer residual
vector quantizers (RVQs) [72] to accurately represent speech with
discrete speech tokens for high-quality and efficient audio trans-
mission in a sound type- and language-agnostic manner2. We aim
to develop the neural codec architecture into an effective decou-
pling model that separates mixed speech tokens into standalone
semantic and acoustic tokens. As illustrated in Figure 4, our pro-
posed decoupling model based on the codec architecture (CDM)
comprises three core components: an encoder-decoder architec-
ture, a HuBERT-equipped RVQs module, and a discriminator. The
encoder-decoder’s primary function of precisely reconstructing the
original audio compels the encoder to extract the key features from
speech signals. The HuBERT-equipped RVQs further decouple these
features and hierarchically quantize them into discrete semantic
and acoustic tokens. The discriminator enforces that the encoder
and RVQs optimize their learned representations, aiming for com-
prehensive retention of the original audio’s details. Through this
structure, we can achieve effective decoupling of speech signals.
2More description of audio codecs are provided in Appendix A.
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Figure 4: Frontend codec-based decoupling model (①) of
SafeEar.

The decoupled semantic and acoustic audio samples can be found
on our demo page [1].

Encoder-Decoder Architecture. To extract information-rich
features E ∈ R𝐶×𝑇𝑛 from the raw audioX, we follow the default con-
figuration of Encodec [17] to use the convolutional-based encoder-
decoder architecture for detailed speech signal capture. As shown
in Figure 4, although we remove the decoder during inference, it is
vital for training to compel the audio codec to faithfully replicate
the original audio, thus preserving the integrity and accuracy of
the encoder’s learned representation E. In our design, we use the
exponential linear unit (ELU) with layer normalization in each con-
volutional layer to enhance the nonlinear representations as well as
the model’s stability, and the decoder’s structure mirrors that of the
encoder. Moreover, to enhance the capability of semantic modeling,
we replace Encodec’s two-layer LSTM with a Bidirectional LSTM
(Bi-LSTM). This modification allows for more precise capture of
information across the audio feature space, producing as output a
compound representation of essential semantic and acoustic prop-
erties of the raw audio for further processing. This design helps to
improve the performance of RVQs feature decoupling.

HuBERT-equipped RVQs for Decoupling. In CDM, we utilize
Residual Vector Quantizers (RVQs) to effectively decouple seman-
tic and acoustic tokens from the encoder’s output E. The RVQs
employ cascaded vector quantization (VQ) layers, which project
the input vector onto a predefined codebook to obtain a quantized
representation. To effectively achieve decoupling, we have specif-
ically designed and adjusted the RVQs, dividing it into two main
parts: the semantic token part (VQ1) and the acoustic token part
(VQ2∼VQ8).

In the semantic token part, we aim to modify the first quantizer
(VQ1) to capture the semantic information from speech, serving a
content-centric role. Specifically, we introduce a knowledge distil-
lation approach, i.e., employing the well-established HuBERT [28]
as our semantic teacher of VQ1. Since HuBERT can well represent
given speech as semantic-only features [48], we employ the average
representation across all HuBERT layers as the semantic supervi-
sion signal, which can encourage the semantic student VQ1 to learn

a very close content representation via:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
1
𝑇𝑛

𝑇𝑛∑︁
𝑡=1

log𝜎 (cos (W · S𝑡 ,H𝑡 )) (1)

where S𝑡 is the VQ1 layer’s quantized output andH𝑡 is the semantic
supervision signal at timestep 𝑡 . cos(·) is cosine similarity. 𝜎 (·)
denotes sigmoid activation.W is the projection matrix.

Subsequently, in the acoustic token part, VQ1’s semantic tokens
S will be stripped away from the full-information encoder’s output
E, resulting in purified acoustic information devoid of semantic in-
formation. These features are then passed to the subsequent seven
quantizers (VQ2∼VQ8), each further refining the acoustic informa-
tion to enhance the feature representation of the sound. Through
this layered and progressively refined processing, RVQs can han-
dle complex sound data more efficiently. Ultimately, the outputs
of all quantizers (VQ1∼VQ8) are accumulated to form the input
for the decoder. This accumulation process effectively recombines
the semantic and acoustic information, enabling the decoder to
reconstruct the original audio accurately. This design allows RVQs
to effectively decouple audio content’s semantic and acoustic prop-
erties while maintaining efficient encoding. Please note that our
design facilitates the cross-language decoupling, i.e., the VQ1 in-
herently takes the main information, so that despite our “semantic
teacher” signal does not take the non-English corpus into account.
SafeEar can also retain primary information in the VQ1 and the
VQ2∼VQ8 mainly describe speech details.

Discriminator. Given the minimal differences between genuine
and deepfake audio, our method is grounded in GAN-like adversar-
ial training principles. By engaging discriminators and codec recon-
struction in a mutually reinforcement iterative process, we force the
encoder and RVQs to learn subtle speech representations, ensuring
the preservation of fine-grained deepfake clues following feature
decoupling. Specifically, we adopt the same three discriminators
as HiFi-Codec [84] that consist of the multi-scale STFT (MS-STFT),
the multi-periodic (MPD), and the multi-scale (MSD) discriminators.
The MS-STFT discriminator analyzes complex-valued multi-scale
STFTs, where real and imaginary parts are concatenated as input,
to make spectrogram-level reconstruction results as similar as the
original one. In contrast, the MPD and MSD focus on making the
waveform-level reconstruction results as similar as the original
one, i.e., the periodic elements and long-term patterns in the audio.
These discriminators employ various sub-discriminators to ana-
lyze audio samples of different sizes and segments, ensuring the
accuracy and integrity of the reconstructed audio. Due to the page
limitations, we detail their objective functions as adversarial loss
in Appendix C.

4.3 Bottleneck & Shuffle Layer
As shown in Figure 5, the frontend CDMof SafeEar initially encodes
waveform inputs into discrete acoustic tokens, A, with each frame
denoted as A𝑖 . The bottleneck layer aims to reduce the dimensions
of acoustic tokens A from R7𝐶×𝑇𝑛 to a more compact space A𝑏 ∈
R𝐶×𝑇𝑛 by using 1D convolution and batch normalization. This layer
serves a dual purpose: first, it enhances computational efficiency
and reduces trainable parameters, facilitating subsequent layers to
operate on a compact representation; second, it acts as a regularizer,

5



Xinfeng Li, et al., 2024 Xinfeng Li, Kai Li, Yifan Zheng, Chen Yan, Xiaoyu Ji, and Wenyuan Xu

…

Acoustic Tokens

VQ
2

VQ
8

VQ
3

VQ
7…

Acoustic Tokens

VQ
2

VQ
8

VQ
3

VQ
7 …

Acoustic Tokens

VQ
2

VQ
8

VQ
3

VQ
7

…Acoustic 
Tokens

VQ2

VQ8

VQ3

B
ottleneck Layer
C

onv1D
 + BN

Shuffle Layer

…

9
42
31

87

…

53
87

9

109

…Acoustic 
Tokens

VQ2

VQ8

VQ3

B
ottleneck Layer
C

onv1D
 + BN

Shuffle Layer

…

9
42
31

87

…

53

87

9

109

…
Acoustic Tokens

VQ
2

VQ
8

VQ
3 …

Acoustic Tokens

VQ
2

VQ
8

VQ
3 …

Acoustic Tokens

VQ
2

VQ
8

VQ
3

𝑿 𝑿

B
ottleneck Layer
C

onv1D
 + BN

𝑨 ∈ ℝ𝟕𝑪×𝑻𝒏

…

9

42

31

87

…

29

12

13

52 𝑨𝒃 ∈ ℝ𝑪×𝑻𝒏

… …

38

32

42

8

…Acoustic 
Tokens

VQ2

VQ8

VQ3

B
ottleneck Layer
C

onv1D
 + BN

Shuffle Layer

…

36
27
11

8

…

9
42
31

87

…

53
87
9

109

…

36
27
11

8

…

53
87
9

109

…

9
42
31

87

… …

𝐀𝐢

)𝑨𝟏
〖"{" 𝑨〗
_𝟏}	

𝑨𝟏𝒃 𝑨𝟐𝒃⋯	𝑨𝒏𝒃𝑨𝒃 =

𝐀𝐛 = 𝐀+𝐛 , 𝐀,𝐛 , ⋯ , 𝐀-"
𝐛 5𝚨 = 𝐀,𝐛 , ⋯ , 𝐀-"

𝐛 , 𝐀+𝐛, 𝐢 ∈ {1, . . , 𝑇!}

Figure 5: Bottlneck & Shuffle layers (②) of SafeEar.

avoiding over-fitting by limiting the amount of acoustic tokens
and stabilizing it via batch normalization, before analyzed by the
deepfake detector.

In addition to decoupling speech information, the shuffle layer
serves to augment content protection by further scrambling the
condensed acoustic tokens A𝑏 . As shown in Figure 5, By randomly
rearranging the elements across the temporal dimension 𝑇𝑛 , this
layer nullifies speech comprehension that is highly dependent on
the temporal order of phonemes and words [42]. We empirically
set a shuffling window of 1 second, corresponding to 50 frames,
to obscure word-level intelligibility (as each token representation
is extracted from a 20ms waveform). Thereby, the likelihood of
attackers deciphering and correcting these sequences is extremely
low, given the sheer number of possible permutations for a 4-second
audio (50!4, approximately 8.56 × 10257, details are discussed in
§8). Our experiments also confirm the dual content protection by
decoupling and shuffling, thwarting the advanced ASR techniques
and human auditory analysis.

4.4 Acoustic-only Deepfake Detector
Recent studies [44, 87] have indicated that the potential of Trans-
formers in audio deepfake detection using full-information audio
waveforms. In our scenario, however, the absence of semantic infor-
mation combined with shuffling-induced acoustic patterns disorder
(e.g., timbre and prosody) presents a unique challenge in detection.
To this regard, we develop a Transformer-based detector and de-
termine its optimal 8 heads for Multi-Head Self-Attention (MHSA)
mechanism [73]. This configuration allows the model to more ef-
fectively engage in long-range feature interaction and dynamic
spatial weighting. It adeptly captures the slight differences between
bonafide and deepfake audio. Moreover, it leverages parallel com-
putation, allowing each attention head to independently process
different aspects of the input feature space. The aggregated features
then form an attention spectrum, which is crucial for adaptively
modulating features to more accurately detect deepfakes.

As shown in Figure 6, we propose the Acoustic-only Deepfake
Detector (ADD), which focuses on determining the genuineness of
audio by analyzing only the shuffled acoustic tokens A. Specifically,
we first flatten the high-frequency tones along the time and fre-
quency axes and add positional information into A using the sine
and cosine alternating functions to enhance the MHSA modelling
capabilities:

PE(A, 2𝑖) = sin[ A

10000(
2𝑖
𝐶
)
]; PE(A, 2𝑖 + 1) = cos[ A

10000(
2𝑖
𝐶
)
] . (2)
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Figure 6: Acoustic-only deepfake detector (③) of SafeEar.

where 𝐶 denotes the token dimensions. We then feed A into two
sets of transformer encoders to process the sequence as a whole
and capture global dependencies. Each set comprises two Feed-
Forward Networks (FFNs), Multi-Head Self-Attention (MHSA), and
Layernorm modules. The output from the Transformer encoders
is finally directed to a fully connection layer, which determines
whether the audio is a deepfake.

4.5 Real-world Augmentation
It is noteworthy that the deepfake-and-bonafide gap in waveform
can be degraded by real-world factors. Although studies have shown
negligible differences in audible audio patterns across microphones
[39], we identify that codec transformations in real-world telecom
channels pose a significant challenge in distinguishing genuine
from deepfake audio. To address this challenge, we have strate-
gically incorporated a few representative codecs into our train-
ing pipeline. These include OPUS [71], known for its versatility
and efficiency across audio types, and G.722 [47], renowned for
high-quality voice transmission. We also utilize GSM for its wide-
spread application in mobile communication, and both 𝜇-law and
A-law [25] codecs, prevalent in North American, European, and
international telephone networks. Additionally, we incorporate
the MP3 codec [62], a popular lossy compression technique in dig-
ital audio but introducing distortions and artifacts. Our diverse
codecs integration strategy enables SafeEar to handle unique dis-
tortions each codec introduces and potentially generalize to more
unseen coding technologies. The enhanced training process pro-
mote SafeEar maintains high accuracy and reliability in various
real-world scenarios, where codec-induced variations are preva-
lent. Our augmentation excludes physical multi-channel informa-
tion [30, 92] that is inapplicable to aid audio transmitted over the
line.

4.6 SafeEar Prototype
We have implemented a prototype of SafeEar using Pytorch 2.1 [56].
During the training phase, we initially train SafeEar’s codec-based
decoupling model on LibriSpeech dataset [55] utilizing four RTX
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3090 GPUs (NVIDIA), adhering to the procedure outlined in Equa-
tion 3. We set the training epoch to 20. The maximum learning rate
was set to 4 × 10−4, and the batch size of each GPU was 20. To
better decouple the semantic and acoustic information of the input
audio, we introduce multiple loss functions, including distillation
loss Ldistill, reconstruction loss Lrec, perceptual loss LG, and Lfeat
implemented via a discriminator, and RVQ commitment loss Lc.
The detailed loss functions are given in Appendix C. The CDM
model’s generator part is trained to optimize the following loss:

Lgen = 𝜆dLdistill + 𝜆rLrec + 𝜆GLG + 𝜆fLfeat + 𝜆cLc (3)

where we set coefficients similar to HiFiGAN [35], with specific
values 𝜆d = 1, 𝜆r = 1, 𝜆G = 3, 𝜆f = 3, 𝜆c = 1.

For the acoustic-only deepfake detector, we set the embedding
dimensions to 1024, and the dropout rate in the model to 0.1. If not
stated otherwise, we inverse SafeEar’s acoustic token sequences
within each 1s segment as the default shuffle approach. For the
Transformer settings in the detector, we set the number of layers
in the Transformer encoder to 2, the number of MHSA’s heads to
8, and the positional encoding to be “sinusoidal". We use BCE loss
function and AdamW optimizer to optimize the detection model
parameters with a learning rate of 3× 10−4 and weight decay set to
1×10−4. Additionally, in each iteration of the training, we randomly
extract a 4-second segment from speech samples and use one 3090
GPU.

5 BENCHMARK CONSTRUCTION
We develop a comprehensive benchmark to evaluate different sys-
tems in terms of defending against deepfake adversaries (DA), and
content recovery adversaries (CRA). The benchmark includes three
deepfake datasets (§5.1), two anti-content recovery datasets (§5.2).

5.1 Comprehensive Deepfake Datasets
To ensure our deepfake benchmark datasets cover a broad spectrum
of TTS/VC techniques, we select the well-recognized ASVspoof
2019 [76] and ASVspoof 2021 [81] databases. Additionally, seeing
the need for a cross-language deepfake benchmark [87], we estab-
lish a large-scale multilingual deepfake dataset using the Common-
Voice corpus, in English, Chinese, German, French, and Italian [4].
This dataset complements English-only ASVspoof 2019 and 2021
databases, forming a comprehensive benchmark (see Table 1).

5.1.1 ASVspoof 2019 [76]: The ASVspoof 2019 LA subset comprises
deepfake samples generated by 19 distinct TTS and VC systems.
Adhering to the official guidelines, we use 6 deepfakes for training
and the remaining 13 unseen deepfakes for testing.

5.1.2 ASVspoof 2021 [81]: While sourced from ASVspoof 2019, the
ASVspoof 2021 LA subset includes deepfake samples under more
realistic conditions, where both bonafide and deepfake voice data
are transmitted via telecom channels, e.g., VoIP. Its codec selection
spans from traditional (e.g., a-law [25]) and modern IP streaming
codecs (e.g., OPUS [71]) in use today, indicating mainstream usage.

5.1.3 Multilingual CVoiceFake: Current deepfake datasets aremain-
ly single language-based and most of them are English deepfake au-
dio datasets like ASVspoof 2019 & 2021, and few of them encompass
other languages, e.g., German or French. To facilitate cross-language

deepfake detection research, we develop CVoiceFake, an extensive
multilingual audio deepfake dataset comprising English, Chinese,
German, French, and Italian, which is sourced from the widely used
CommonVoice dataset [4]. CVoiceFake also provides ground-truth
transcriptions for each audio, making it an ideal benchmark for
both deepfake detection (§6) and content protection evaluation (§7).
In alignment with deepfake techniques that adversaries likely use in
real-world attacks, we employ five representative neural and digital
signal processing (DSP) speech synthesis methods to yield deepfake
samples, demo audio of which are available on website [1]:

• Parallel WaveGAN [82]: As a non-autoregressive vocoder-
based model, Parallel WaveGAN produces high-fidelity audio
rapidly, ideal for efficient and quality deepfake generation.

• Multi-band MelGAN [85]: Multi-band MelGAN is a variant
of MelGAN [36] that divides the frequency spectrum into sub-
bands for faster and more stable multilingual vocoder training,
enhancing the robustness and scalability of the dataset.

• Style MelGAN [52]: Style MelGAN is designed to capture fine
prosodic and stylistic nuances of speech, making it particularly
compelling for deepfake applications that require high levels of
expressivity and variation in speech synthesis.

• Griffin-Lim [23]: This algorithm reconstructs waveforms from
spectrograms using an iterative phase estimationmethod. Though
less high-fidelity than neural vocoders, it serves as a traditional
baseline for comparing deepfake generation.

• WORLD [49]: WORLD is a statistical parameter-based voice
synthesis system that offers fine control over the spectral and
prosodic features of the synthesized audio. Its fine manipulation
is useful for crafting the nuanced variations needed in deepfake
datasets.

In addition to utilizing high-fidelity vocoders for deepfake gen-
eration, we also implement MP3 compression on all genuine and
synthesized speech samples. This step replicates the prevalent lossy
media encoding used in social media platforms to enhance storage
efficiency, thereby complementing the ASVspoof 2021’s empha-
sis on the effects of transmission codecs. Overall, our benchmark
integrates a comprehensive multilingual deepfake dataset, which
features a range of deepfake generation methods and considers
real-world encoding impacts.

5.2 Anti-Content Recovery Datasets
Our benchmark also includes multilingual datasets to assess the per-
formance of SafeEar in protecting user content privacy. The lack of
ground-truth text references in ASVspoof challenge samples limits
accurate evaluation of anti-content recovery adversaries (CRA). We
opt to utilize the widely adopted datasets in ASR tasks—LibriSpeech
(English), and reuse CVoiceFake (English, Chinese, German, French,
and Italian). Details are given in Table 1.

5.2.1 LibriSpeech [55]: We utilize the train clean-100, clean-360,
and other-500 subsets, totally extensive 960-hour corpus, for train-
ing CRA’s ASR models. Then we test CRA’s recovery ability using
dev-clean, test-clean, and test-other subsets. These subsets offer a
diverse range of accents and speaking styles in English, serving as
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Table 1: Statistics of benchmark datasets.

Task‡ Dataset Char.♮ Lang.★ Samples Duration (s)

T1 ASVspoof 2019 clean En 96,617 0.470∼16.548

T1 ASVspoof 2021 telecom En 173,556 0.355∼13.402

T1
+
T2

CVoiceFake
(Multilingual) media

En 257,581 0.972∼10.692
Cn 254,116 1.512∼19.656
De 239,127 1.476∼11.124
Fr 284,351 0.792∼11.808
It 219,718 0.792∼14.112

T2 Librispeech clean En 289,503 1.285∼34.955
(1) ‡: T1 means Task 1, which serves as a benchmark to assess anti-deepfake
adversary; T2 means Task 2, which serves as a benchmark to assess anti-
content recovery adversary. (2) ♮: Char means the characteristics of the
dataset, where “telecom” means using telecom codecs and “media” means
using the MP3 codec for evaluating real-world factors. (3)★: En: English,
Cn: Chinese, De: German, Fr: French, and It: Italian.

a basis for evaluating the adversary’s ability to reconstruct speech
and compromise content privacy.

5.2.2 Multilingual CVoiceFake: We reuse our developed CVoice-
Fake dataset since it offers ground-truth transcriptions of each
audio, and we employ their original uncompressed version. This
presents an optimal condition for the CRA to infer speech content.
SafeEar’s successful privacy protection in this context highlights
its robustness against CRA across diverse linguistic backgrounds.

6 EVALUATION: DEEPFAKE DETECTION
In this section, we focus on the task 1 (T1): anti-deepfake adversary,
involving a comparative analysis of SafeEar against eight baselines
across three deepfake benchmark datasets. We also investigate dif-
ferent impact factors, i.e., transmission codecs, deepfake techniques,
and unseen-language deepfakes.

6.1 Experiment Setup
Baselines. We choose 8 representative baselines including end-to-
end detectors—AASIST [31], RawNet 2 [67], and Rawformer [44]—
take raw waveforms as input, as well as representative pipeline
detectors—LFCC + SE-ResNet34 [54], LFCC + LCNN-LSTM [75],
LFCC + GMM [12], and CQCC + GMM [12]. These baseline choice
draws upon the recent state-of-the-art findings and official coun-
termeasures provided by the ASVspoof challenge community. We
also implement a frontend Wav2Vec2 feature-based system whose
Transformer-based detector is configured the same as SafeEar for a
fair comparison.
Metrics. We follow two standard metrics for audio deepfake de-
tection [53]. (1) Equal Error Rate (EER): it characterizes the point
at which the false acceptance rate equals the false rejection rate in
deepfake detection; a system with lower EER exhibits more precise
detection capability. (2) Tandem Detection Cost Function (t-DCF):
Unlike EER, it quantifies the cost-risk balance of false acceptances
and false rejections, considering the prior probabilities of encoun-
tering bonafide versus deepfake utterances; a lower t-DCF indicates
a better performance. Detailed formulations are in Appendix D.

Table 2: [T1] Overall Performance of SafeEar compared with
baselines on ASVspoof 2019 & 2021 datasets.

Type‡ Method ASVspoof 2019 ASVspoof 2021
EER (%)↓ t-DCF↓ EER (%)↓ t-DCF↓

E2E
AASIST 1.20 0.034 9.15 0.437
RawNet 2 5.64 0.130 9.50 0.426
Rawformer 1.05 0.034 8.72 0.397

pipe

LFCC + SE-ResNet34 4.80 0.098 10.39 0.355
LFCC + LCNN-LSTM 5.06 0.156 9.26 0.345
LFCC + GMM 8.09 0.212 19.30 0.576
CQCC + GMM 9.57 0.237 15.62 0.497
Wav2Vec2 + Transformer 3.82 0.184 6.64 0.330
SafeEar (Ours) 3.10 0.149 7.22 0.336

‡: E2E: An end-to-end detector takes speech’s raw waveform as input;
pipe: A pipeline detector employs a frontend module to extract speech
representation, such as LFCC, CQCC, and Wav2Vec2, then feeding it to a
backend classifier like SE-ResNet34, LCNN-LSTM, GMM, and Transformer.

Table 3: [T1] Overall Performance of SafeEar compared with
baselines on the CVoiceFake dataset.

Method CVoiceFake EER (%) ↓
English Chinese German French Italian Average

AASIST 1.63 1.50 1.63 2.79 1.89 1.89
Rawformer 1.13 1.50 1.13 1.85 0.81 1.28
Wav2Vec2 12.33 10.17 12.33 13.59 9.45 11.57
SafeEar (Ours) 2.01 1.63 1.77 2.80 1.89 2.02

‡: Wav2Vec2: simplified for Wav2Vec2 + Transformer.

6.2 Overall Performance
We present the overall performance comparison of SafeEar with
8 baseline detectors, as detailed in Table 2 for English ASVspoof
2019 and 2021, and in Table 3 for multilingual CVoiceFake. Note
that for each baseline system, we have replicated and verified their
performance, and herein report the official results.
ASVspoof 2019 and 2021 (English). Table 2 demonstrates that
SafeEar outperforms the majority of baselines on these two datasets.
In the ASVspoof 2019 dataset, SafeEar achieves a lower EER of 3.10%
than the average 4.90% EER of all other baselines and a comparable
t-DCF of 0.149. In the more challenging ASVspoof 2021 dataset,
although we observe a general degradation, SafeEar’s superiority
is even more pronounced by achieving an EER of 7.22% and t-
DCF of 0.336, surpassing an average 11.07% EER and 0.420 t-DCF
across all baselines. We make three key observations. Firstly, on
ASVspoof 2019, four detection systems surpass the state-of-the-art
4.04% EER reported in [53], i.e., AASIST, Rawformer, Wav2Vec2 +
Transformer, and SafeEar. Notably, we supply acoustic-only tokens
to other pipeline detectors, while the results demonstrate a marked
degradation in performance: SE-ResNet34 decreases from 4.80% to
6.09%, LCNN-LSTM from 5.06% to 10.41%, and GMM from 8.09%
to 15.73%. We envision that this decline is due to the classifier
architectures being not designed for reliably extracting deepfake
clues from shuffled and semantically-devoid tokens, indicating the
effectiveness of SafeEar’s tailored deepfake detector.

On ASVspoof 2021, SafeEar outperforms most systems and ex-
hibits comparable EER and t-DCF with Wav2Vec2 + Transformer,
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Table 4: [T1] Comparison of SafeEar and baselines in detect-
ing deepfakes transmitted via different channels.

Method ASVspoof 2021 EER (%) ↓
a-law G.722 GSM OPUS unknown 𝜇-law /

AASIST 7.17 10.07 8.15 19.86 17.18 7.17 8.31
Rawformer 2.64 2.28 3.91 3.23 5.73 2.5 2.36
Wav2Vec2 4.89 4.39 6.16 4.28 6.5 4.46 4.04
SafeEar (Ours) 6.13 4.35 8.19 4.96 9.74 6.25 4.06

suggesting the effectiveness of SafeEar in resisting diverse audio
deepfakes that are transmitted through varying channels. Secondly,
end-to-end models exhibit superior performance on ASVspoof 2019
due to their full leverage of speech information, enabling optimal
speech representations for deepfake detection. However, they ex-
hibit under-generalization on ASVspoof 2021, and raise privacy
concerns due to their need of complete speech recordings. Lastly,
the Wav2Vec2-based system maintains consistent performance,
likely due to its extensive pretraining on diverse audio inputs, offer-
ing a transferable speech representation. However, this advantage
also presents a risk, because content recovery adversaries could eas-
ily exploit such features for decoding intelligible content as we
elaborate in Task 2 (§7).
CVoiceFake (Multiligual). Given the widespread misuse of deep-
fakes in the context of different languages, we compare SafeEar
against above three top baseline systems: AASIST, Rawformer, and
Wav2Vec2 + Transformer. For a fair comparison, we randomly select
80% speech samples from each language subset for training, reserv-
ing the remaining 20% for testing. As shown in Table 3, SafeEar
achieves an average EER of 2.02%, comparable to the performance
of full-information-based AASIST and Rawformer, suggesting its
multi-language detection ability. We consider Wav2Vec2’s subopti-
mal performance on CVoiceFake is attributed to its incompatibility
with excessively low MP3 bitrates like 48 kbit/sec [81], impeding its
feature extraction, whereas SafeEar leverages robust neural codec
architectures [17] that maintain reliable acoustic tokens extraction
even at low bitrates.

6.3 Different Transmission Codecs
Given the potential for fraudulent activities executing through di-
verse communication tools worldwide, we see the importance of
robust detection across different telecom channels. For a fair com-
parison, we employ the identical real-world augmentation strategy
as detailed in §4.5 to train each detector, as shown in Table 4. Then
we evaluate the impact of telecom channels using 6 representative
codecs officially set in the ASVspoof 2021 challenge, including a-
law, G722, GSM, OPUS, unknown, 𝜇-law, and a no codec scenario
for baseline comparison. We observe despite there are slight perfor-
mance gap against Rawformer, SafeEar is on par with Wav2Vec2
across most codecs and generally outperforms the end-to-end AA-
SIST. Another finding is a consistent decline in performance when
detecting unknown codecs. This decline is likely due to the sequen-
tial compressions these codecs undergo across multiple telecom
channels, resulting in a more significant loss of signal fidelity com-
pared to mainstream codecs.

Table 5: [T1] Comparison of SafeEar and baselines in detect-
ing deepfakes created by different synthetic techniques.

Technique
CVoiceFake EER (%) ↓

Overall Griffin
Lim WORLD Multiband

MelGAN
Parallel

WaveGAN
Style

MelGAN

AASIST 1.89 2.88 1.03 0.99 0.70 1.46
Rawformer 1.28 2.27 1.29 0.52 0.57 0.96
Wav2Vec2 11.57 23.64 7.78 7.04 8.98 6.24
SafeEar (Ours) 2.02 3.68 0.99 0.76 0.61 1.37

Table 6: [T1] Unseen language Detection Analysis.

SafeEar CVoiceFake EER (%) ↓
English Chinese German French Italian Average

English 5.05 10.36 3.94 15.92 13.25 9.70
Chinese 6.68 2.75 5.42 6.45 4.65 5.19
German 5.98 9.07 1.33 14.76 11.93 8.61
French 11.62 6.56 9.87 6.56 6.89 8.30
Italian 7.81 4.54 7.40 6.06 3.57 5.88

6.4 Different Deepfake Techniques
We compare SafeEar with baselines on a spectrum of prevalent deep-
fake vocoders and analyzes the individual performance in Table 5.
SafeEar shows remarkable vocoder-agnostic detection capability
across all tested cases, hitting overall 2.02% comparable to AASIST
and Rawformer and surpassing Wav2Vec2 significantly. In real-
life scenarios, deepfake adversaries are likely to employ advanced
neural vocoders, such as Multiband-MelGAN, Parallel-WaveGAN,
and Style-MelGAN to produce highly convincing synthetic speech.
SafeEar can even hit 0.61% EER, highlighting its efficacy to thwart
sophisticated deepfake methods. We validate higher EERs in the
classical deepfake technique, Griffin-Lim, is caused by that the atten-
tion of model is trained to focus on minor artifacts existed in other
four advanced vocoders, thus leading to minor degradation. For
instance, our further individual training on Griffin-Lim, denoting
SafeEar can detect it with 2.01% EER. We envision that a holis-
tic system can ensemble different detectors trained on individual
deepfake technologies.

6.5 Unseen-Language Deepfake Detection
With a numerous user base engaging in virtual communications
daily, SafeEar may encounter deepfake speech spoken in unseen
languages. We consider a challenging scenario where SafeEar’s
transformer detector is trained only in one language and then iden-
tifies deepfake audios across all five languages. Table 6 demonstrates
that without a comprehensive training with multi-language data,
the performance of the Transformer-based detector degrades. For
instance, the detector trained on English obtains 15.92% EER on
French and 9.70% average EER across five languages, while the opti-
mal average EER is down to 2.02% as shown in Table 3. We also find
that the choice of training language impacts to a certain degree. For
instance, the detector trained on Chinese data achieves an average
EER of 5.19%, lower than other settings, like 9.70% (English). These
findings highlight the necessity for more multilingual datasets to
develop practical deepfake detection approaches.
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7 EVALUATION: CONTENT PROTECTION
In this section, we focus on the task 2 (T2): anti-content recovery
adversaries.We consider three kinds of content recovery adversaries,
i.e., naive (CRA1), knowledgeable (CRA2), and adaptive (CRA3), with
different knowledge and capabilities.

7.1 Experiment Setup
Adversary Definition.We define three content recovery ad-

versaries that pose threats to SafeEar:

• Naive content recovery adversary (CRA1): The adversary lacks
knowledge of SafeEar’s internal parameters. However, CRA1 can
emulate user interactions with SafeEar to input known speech,
thereby acquiring a substantial dataset of pairs of SafeEar’s to-
kens and ground-truth text. In our evaluation, CRA1 can acquire
an extensive 960-hour Librispeech corpus to train advanced ASR
models for recovering text from received tokens.

• Knowledgeable content adversary (CRA2): In contrast, CRA2 is
assumed to have the knowledge of SafeEar’s algorithm and
can replicate its decoder. With this knowledge, CRA2 does not
need to collect numerous data for ASR training. Instead, CRA2
can reconstruct speech waveform from an individual speech
sample’s acoustic tokens and apply advanced ASR models or
human auditory analysis for recognizing content.

• Adaptive content adversary (CRA3): We assume this most ad-
vanced adversary can even deduce the shuffled order of a given
token sequence and rectify it with a few attempts, allowing
CRA3 to derive the original acoustic token sequence and then
recover content as CRA2 does.

Baselines.We envision that content recovery adversaries can
employ 7 state-of-the-art ASR systems, including local and com-
mercial ASRs. For CRA1, we compare the content recovery effi-
cacy based on SafeEar and other inputs, leveraging the leading
Bi-LSTM [22] and Conformer [24] ASR architectures. For CRA2, we
utilize the well-recognized local Wav2Vec2 [59] and 4 commercial
ASRs [5, 15, 29, 70] to compare SafeEar and other from CRA2’s
reconstructed speech waveforms as inputs. For CRA3, we keep the
same setting as CRA2 yet this most advanced adversary can rectify
shuffled acoustic tokens before speech reconstruction.

Metrics. (1) Word/Character Error Rate (WER/CER): they mea-
sure the accuracy of content recovery from processed audio by indi-
cating the proportion of words or characters incorrectly transcribed
by an ASR system. A higher WER/CER denotes a better privacy-
preserving ability against content recovery attacks. Note that WER
can exceed 100% because its upper bound is𝑚𝑎𝑥 (𝑁 1, 𝑁 2)/𝑁 1 [50],
where N1 and N2 are the number of words in ground-truth and ASR
transcription. (2) Short-Time Objective Intelligibility (STOI) [66]: it
indicates speech signal intelligibility with its range quantified from
0 to 1 to represent the percentage of words that are correctly un-
derstood. A lower STOI means a better privacy-preserving ability.
(3) Subjective Assessment: we conduct a user study in §7.5 that in-
cludes three sub-metrics—ASR effectiveness, human intelligibility,
and human WER.

Table 7: [T2] English (Seen language) content protection
against naive adversary’s recovery attacks (CRA1).

ASR
Architecture Input♮ Libri. dev-clean Libri. test-clean

WER (%)↑ CER (%)↑ WER (%)↑ CER (%)↑

Bi-LSTM

Waveform 10.01 3.15 10.46 3.40
Wav2Vec2 1.78 0.48 1.99 0.52
Semantic 19.03 5.79 19.61 5.84
SafeEar 100.2 94.85 101.4 97.12

Conformer

Waveform 4.69 1.79 2.55 0.86
Wav2Vec2 3.09 1.05 2.25 0.82
Semantic 11.64 4.92 6.68 3.11
SafeEar 93.93 72.74 106.2 78.76

♮: Semantic means S from VQ1; SafeEar means acoustic tokens (VQ2∼VQ8)
goes through bottleneck & shuffle layer as A.

Table 8: [T2] Multilingual (Unseen language) content protec-
tion against naive adversary’s recovery attacks (CRA1).

ASR
Architecture Input CVoiceFake WER (%) ↑

English Chinese German French Italian

Conformer Wav2Vec2 15.69 19.03 8.93 10.24 8.38
SafeEar 98.23 94.82 108.2 104.6 99.36

7.2 Anti-Naive Adversary (CRA1)
In this part, we assess SafeEar’s efficacy in multi-language content
protection against recovery attacks (CRA1). These adversaries can
gather shuffled acoustic tokens and corresponding ground-truth
text pairs from SafeEar to train advanced Bi-LSTM and Conformer
models. Given that advanced end-to-end detectors like AASIST and
Rawformer, which take raw waveforms as inputs, alongside the
Wav2Vec2-based pipeline detector, we include both input types for
evaluation. Additionally, SafeEar’s capacity for semantic-acoustic
decoupling is evaluated, using its semantic tokens as a baseline for
comparison.

CRA1—English Content Protection. Table 7 demonstrates
that CRA1 can easily infer users’ speech content when receiving
raw waveform and Wav2Vec2 feature inputs, with all WERs below
10.46%. Bi-LSTM and Conformer separately transcribe Wav2Vec2
and waveforms better, with minimal 1.78% and 2.55% WERs. As for
semantic tokens, all WERs below 19.61% and a minimum WER of
6.68% indicates that SafeEar well decouples semantic information
from speech. In contrast, the acoustic tokens effective in deepfake
detection, yet inapplicable for conversion back into intelligible
content, even when CRA1 trains both ASR models using 960-hour
Librispeech dataset over multiple epochs. As shown in Figure 7,
during the training of ASR models based on acoustic tokens, the
validationWER curves of SafeEar remain high and do not converge,
keeping 90.40% WER higher than the Wav2Vec2-based system,
highlighting SafeEar’s resilience against content recovery attacks.
Finally, the WERs and CERs are still too high: 93.93∼106.2% and
72.74∼97.12%, respectively, far surpassing the unacceptable WER
threshold of over 45% as reported in [51]. The results of our user
study (see §7.5) also confirms that these ASR-transcribed text are
unintelligible.

CRA1—Unseen Language Content Protection. As SafeEar’s
semantic-acoustic decoupling ability derives from the English-based
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Figure 7: WER curves validated on the dev-clean set during
training (CRA1).

Table 9: [T2] English content protection against knowledge-
able adversary’s recovery attacks (CRA2).

ASR Model‡ Input♮ Libri. test-clean Libri. test-other
WER (%)↑ CER (%)↑ WER (%)↑ CER (%)↑

Wav2Vec2
Original 3.15 0.88 7.68 2.72
Coded 3.82 1.17 11.83 4.86
SafeEar 101.1 91.99 101.46 93.19

Iflytek API
Original 8.09 4.25 13.80 6.94
Coded 17.82 14.18 24.36 16.71
SafeEar 98.59 93.10 99.54 93.62

Tecent API
Original 4.65 3.07 8.14 4.56
Coded 14.74 13.13 18.56 14.12
SafeEar 99.52 99.40 99.68 99.62

Azure API
Original 5.14 3.25 10.58 6.43
Coded 5.68 3.51 14.56 8.95
SafeEar 100.0 99.98 100.0 100.0

Amazon API
Original 4.98 3.24 8.56 4.80
Coded 15.00 13.33 19.06 14.25
SafeEar 99.86 95.54 99.70 95.07

(i) ‡: HereWav2Vec2 denotes the open-source ASRmodel [20]. (ii) ♮:Original
means uncompressed audio; Coded means the audio go through the OPUS
codec processing [71].

HuBERT teacher, we evaluate its effectiveness in protecting unseen-
language content, including Chinese, German, French, and Italian.
We keep Wav2Vec2 with the lowest WER in Table 7 as a baseline
comparison. Table 8 shows that CRA1 can train Wav2Vec2-based
ASRs [59] to obtain acceptable WERs with audio recorded in non-
ideal conditions, while SafeEar well impedes adversaries in train-
ing usable ASRs. This is evidenced by all WERs exceeding 94.82%,
suggesting a substantial error rate in recovered information. We at-
tribute the zero-shot speech disentanglement ability to two reasons:
First, neural codec models possess the language-agnostic proper-
ties for compression and decompression, making them suitable for
various instant communication platforms. SafeEar, built on this
foundation, succeeds cross-language ability. Second, as detailed in
§4.2, the RVQs architecture of SafeEar’s frontend CDM facilitates
primary information retained in its VQ1, and the VQ2∼VQ8 mainly
describe speech details like prosody and timbre. Third, we consider
that the shuffle operation also interferes ASRs to transcribe.

Table 10: [T2] Unseen-language content protection against
knowledgeable adversary’s recovery attacks (CRA2).

ASR Model‡ Input CVoiceFake WER (%) ↑
English Chinese German French Italian

Wav2Vec2 Original 15.69 19.03 8.93 10.24 8.38
SafeEar 108.47 90.89 129.49 113.65 101.51

Iflytek API Original 18.11 7.83 18.63 25.58 31.09
SafeEar 100.39 97.02 99.66 108.8 101.54

Tencent API Original 11.05 7.09 - 10.43 -
SafeEar 97.53 100.0 - 99.66 -

Azure API Original 10.47 10.48 14.99 20.83 8.29
SafeEar 100.0 100.0 100.0 100.29 99.98

Amazon API Original 10.45 20.44 13.60 10.99 5.93
SafeEar 99.64 96.06 99.63 99.68 99.55

‡: Wav2Vec2 denotes the open-source ASR model [64]; Tecent ASR API
does not support German and Italian transcription.

7.3 Anti-Knowledgeable Adversary (CRA2)
In this part, we evaluate the resistance of SafeEar against knowl-
edgeable content adversaries (CRA2), who can reconstruct received
tokens into speechwaveforms and employ off-the-shelf ASRmodels
or even human auditory to analyze speech content across different
languages.

CRA2—EnglishContent Protection.To comprehensively eval-
uate CRA2’s ability to recover content, we select the best local ASR,
i.e., Wav2Vec2 [20] and four commercial ASR APIs out of multi-
ple off-the-shelf candidates. As illustrated in Table 9, the original
speech waveforms serve as an optimal baseline, based on which,
CRA2 can obtain a low transcription WERs of 3.15% and 7.68% on
two subsets. In the “Coded” reference group where audio samples
are processed by the representative telecom codec—OPUS, CRA2
maintains comparable WERs as low as 3.82% and 11.83%, respec-
tively. This results confirms that CRA2 can easily eavesdrop speech
content within virtual calls or meetings despite distortion exists. In
contrast, SafeEar significantly safeguards the actual speech content
by shuffled acoustic tokens, resulting in an average WER above
99.94%, a level too high for adversaries to meaningfully interpret the
content. Additionally, as shown in Table 11, the STOI metric, used
for assessing the objective intelligibility of CRA2’s reconstructed
speech samples, further substantiate inefficacy of CRA2 in under-
standing data anonymized by SafeEar, with values of 0.0018 and
0.0015, significantly lower than 0.8698 and 0.8719 of “Coded”.

CRA2—Unseen Language Content Protection. CRA2 may
employ established ASR models for different languages to con-
duct content recovery across diverse linguistic contexts. We report
SafeEar’s effectiveness in protecting content in unseen languages
against CRA2 in Table 10, omitting the coded setting due to its
results being very close to the original audio. Results indicate that
CRA2 can recover meaningful content from multilingual original
audio with slightly higher WER due to audio’s lower quality. How-
ever, SafeEar still safeguards content privacy, maintaining all WERs
above 90.89% and averaging 102.63% across five ASR models. As
shown in Table 11, the objective STOI values for SafeEar all ap-
proach 0, ranging between 0.0031 and 0.0106. In contrast, the STOI
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Table 11: [T2] Speech objective intelligibility (STOI).

STOI♮
Librispeech↓ CVoiceFake↓

test-clean test-other English Chinese German French Italian

Coded 0.8698 0.8179 0.8902 0.7844 0.7494 0.7809 0.7326
SafeEar 0.0018 0.0015 0.0036 0.0018 0.0106 0.0031 0.0051

(i) ♮: The calculation of STOI, which ranges from 0 to 1, is conducted using
the original waveform as a reference.
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Figure 8: Adaptive adversary’s (CRA3) recovery performance
on different datasets compared with CRA2.

values for the “Coded” condition consistently exceed 0.7326. This
remarkable contrast confirms the efficacy of SafeEar in unseen-
language content protection. Moreover, these results conform with
the subjective intelligibility of our user study (see §7.5).

7.4 Anti-Adaptive Adversary (CRA3)
In this part, we explore whether SafeEar can safeguard speech
content from recovery by the most adaptive adversary (CRA3).
This evaluation also serves as an ablation study that examines the
standalone content protection ability of acoustic tokens. CRA3 ad-
versaries are distinguished from CRA1 and CRA2 by their ability to
rectify the correct temporal sequence of acoustic tokens A, denoted
as “SafeEar*”, even after random shuffling to A. For direct compari-
son, we put above three types of audio samples on our website [1].
As shown in Figure 8, an overall decrease in WER/CERs compared
to SafeEar (CRA2) is observed, indicating CRA3’s slight improve-
ment in content comprehension. However, these rates remain too
high to comprehend, due to acoustic tokens’ devoid of semantic
information. Furthermore, we envision that an adaptive adversary
would repeatedly listen to the correct-order speech to interpret it.
To explore this, we have established a user study in §7.5, including
three aspects of subjective assessment.

7.5 User Study
To validate SafeEar’s content protection against machine-based
and human auditory analysis, we conduct a user study, which is
approved by the Institutional Review Board (IRB) of our institute.

Setup. We have recruited 68 participants, aged 21∼35 years and
comprising 51 males and 17 females with bilingual proficiency in

English and Chinese. Our user study includes two sets of questions:
(1) ASR effectiveness. To evaluate whether human adversaries can
extract meaningful information from content transcribed by both
self-trained and off-the-shelf ASR models, we set a metric, named
ASR effectiveness. Participants are asked to rate on a scale of 1∼10
points (1 indicating no correlation, and 10 indicating exact match)
their ability to deduce the original text from machine-transcribed
results. (2) Intelligibility & Human WER: To assess whether SafeEar
can shield speech reconstruction from human auditory analysis.
Participants are asked to listen to audio samples and rate their
clarity on a scale of 1 to 10 (1 being entirely unintelligible, and 10
being crystal clear). Subsequently, they manually transcribed the
speech content for human-ear WER calculation. Participants were
required to act themselves as content recovery adversaries (CRA),
and answered all questions under a quiet environment to better
emulate the optimal content recovery performance.

Results. Figure 9 illustrates the findings on the three pivotal
metrics. We categorized and analyzed the results based on differ-
ent levels of test speech sample reconstruction: Original, SafeEar
(CRA2), and SafeEar* (CRA3). In line with above experiments, orig-
inal speech samples represented baseline performance of exist-
ing deepfake detectors without content privacy protection. The
study reveals that participants can discern actual content from
ASR-transcribed text, evidenced by high average scores of 8.99 in
ASR effectiveness and 9.38 in intelligibility. Manual transcription
attempts yield acceptable 24.45% and 11.32% WER in English and
Chinese, respectively, where the accuracy is slightly affected by the
variance of individual auditory abilities. In contrast, metrics signifi-
cantly drops under SafeEar protection in CRA2 and CRA3 scenarios.
As speech samples are reconstructed from shuffled acoustic-only in-
formation in CRA2 cases, participants struggled to deduce content
from meaningless transcriptions, resulting in average scores of 1.31
in ASR effectiveness and 1.10 in intelligibility, with human WERs
soaring to 98.31% and 99.75%. Although adversaries may recon-
struct the acoustic tokens with correct order into speech (CRA3),
participant responses confirm the failure of both machine and hu-
man auditory analysis, with negligible improvements (1.40 in ASR
effectiveness, 1.60 in intelligibility, and persistently high WERs).
Consequently, SafeEar well safeguards content privacy against both
machine and human auditory analysis.

8 DISCUSSION
Overhead Analysis of SafeEar.We evaluate SafeEar’s over-

head by comparing its real-time factor (RTF) and floating point
operations per second (FLOPs) against established baselines on the
identical hardware platform. RTF, defined as 𝑅𝑇𝐹 = 𝑇𝑑𝑒𝑡𝑒𝑐𝑡/𝑇𝑎𝑢𝑑𝑖𝑜 ,
measures the model’s speed in processing audio inputs, where
𝑇𝑎𝑢𝑑𝑖𝑜 is the duration of the original audio and 𝑇𝑑𝑒𝑡𝑒𝑐𝑡 represents
the detection latency. FLOPs reflects the computational complexity
of the model—lower FLOPs correspond to lower complexity. As
Table 12 demonstrates, all methods achieve low RTFs in detecting
audio deepfakes. While SafeEar operates at roughly 2∼3 times the
latency of non-privacy-centric methods like AASIST, it significantly
outperforms traditional cryptographic methods, which exhibit at
least a 100-fold increase in latency over plaintext computations [14].
Regarding FLOPs, despite SafeEar having slightly higher FLOPs at
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Figure 9: Results of the user study: ASR effectiveness, Intelli-
gibility, and HumanWER metrics vary with three types of
speech—Original, SafeEar (CRA2), and SafeEar* (CRA3).

Table 12: Additional cost of SafeEar compared with baseline
methods: RTF and FLOPs.

Method RTF ↓ FLOPs ↓

AASIST 0.0155 45.49T
Wav2vec2+Transformer 0.0111 47.05T
SafeEar (Ours) 0.0366 62.76T

62.76T, it remains comparable with other methods. Overall, SafeEar
introduces acceptable additional cost, balancing privacy protection
with computational efficiency. We envision that future engineer-
ing efforts in model architecture could lead to improvements in
overhead.

Limitation. (1) For deepfake detection, although SafeEar demon-
strates comparable performance with state-of-the-art detectors, it
shares a prevalent limitation in current ML-based detection meth-
ods in terms of explainability. (2) For content privacy, though
SafeEar exhibits resilience against various adversaries, as substan-
tiated by our experiments and probabilistic analysis, it is difficult
to provide a strong mathematical guarantee since SafeEar employs
a non-cryptographic approach.

Probabilistic Perspective Protection. Despite lacking strong
mathematical guarantees, SafeEar protects user content privacy
from the probabilistic perspective. Our shuffle layer enhances the
CDM that decouples and protects semantic information from ex-
posure to the detection model, forming a dual-layer content pri-
vacy protection. Specifically, the shuffle algorithm creates innu-
merable combinations; for a one-second window of 50 frames, the
potential permutations number 50! (50 factorial), approximately
3.0414 × 1064. Extending this to the entire sequence of acoustic to-
kens A𝑏 ∈ R𝐶×𝑇𝑛 , where𝑇𝑛 is the total number of temporal frames,
the complexity expands exponentially as 𝑃𝑡𝑜𝑡𝑎𝑙 = (50!)𝑇𝑛/50. Con-
sequently, the probability of correctly reconstructing a shuffled
acoustic token sequence A to its original order A declines dramati-
cally. For instance, the likelihood of correctly assembling a 4-second
audio segment (200 frames) is extremely low, with the probability

calculated at 𝑃A = 1
(50!)4 = 1.1687 × 10−258. This indicates that our

shuffle layer acts as a formidable barrier against content recovery,
effectively complementing the protective capabilities of the CDM.

Advantages of SafeEar. The processing of raw data and the
decoupling steps are lightweight enough to operate on local user
device, while deepfake detection (1) relies on storage and sharing
of confidential audios and (2) needs to be maintained as any large
ML model, as in, re-trained and fine-tuned iteratively. In terms of
privacy, if we as a community only develop end-to-end detectors,
we remain reliant on raw (confidential) audios which need to be
sent around for training, fine-tuning and validation, and which
potentially can be leaked from the trained model. If we remove se-
mantic tokens while still on the user’s device, the whole detection
approach can work on acoustic-only inputs, and this work demon-
strates that it is perfectly feasible to operate it as such. This respects
the concept of “data minimization”: if we don’t need semantics for
detection, it makes sense to try build a system that obviates its
usage. Based on our talk with mobile vendors, SafeEar is recog-
nized as a valuable and attractive feature that adds an extra layer
of protection to alleviate users’ trust issues towards service/mobile
vendors.

For detection services typically operated by third parties, our
method is particularly relevant. It maintains privacy while offer-
ing flexible and reliable detection, and can further enable robust
decision-making on servers by integrating multiple detection mod-
els, which would be computationally heavy if deployed on local
user devices. The SafeEar framework facilitates timely adaptation
to deepfake advancements with lower maintenance costs compared
to adapting various local devices, thereby safeguarding users from
new deepfake risks due to delayed service updates.

Dataset for Future Research. Like the ASVspoof 2019 and 2021
datasets, we plan to release our multilingual CVoiceFake dataset to
facilitate research on deepfake detection. The access to CVoiceFake
will be granted exclusively to requests adhering to ethical research
standards and approved by IRB, for reducing the risk of misusing
realistic synthetic audio. Moreover, we advocate for future research
to tackle privacy violations in existing applications, establishing
privacy-centric intelligent services.

9 RELATEDWORK
Defense against Audio Deepfake. In the realm of audio deep-

fake defense, strategies can be divided into three classes: proactive
voiceprint anonymization to thwart unauthorized synthesis [88],
liveness detection leveraging physical properties [41, 83], and ma-
chine learning (ML)-enabled deepfake detection [12, 31, 44, 54, 67,
75]. The research community largely concentrates on ML-based de-
tection systems, given their ease deployment, superior performance
and, general applicability. To enable accurate ML-based detection
systems, prior works extensively explore three aspects: (1) discrim-
inative feature extraction, especially spectral features like MFCC
and LFCC [54, 75], and deep learning features like Wav2Vec2 [80];
(2) classification algorithms, e.g., SVM [3], GMM [12], CNN [54],
GNN [31], and Transformer [44]; (3) generalization methods, e.g.,
investigating novel loss functions [13, 94] and using continual learn-
ing strategy [91] to deal with out-of-domain dataset in real-life
scenarios. However, to the best of our knowledge, existing audio
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deepfake detection systems largely neglect the preservation of
speech content privacy. The only exception is a proof-of-concept
study employing secure multi-party computation (SMPC), which
lacks practicality due to its overly simplistic one-layer architecture
and significant latency [14].

Speech Privacy Preservation. Speech privacy preservation
efforts are mainly focused on safeguarding speaker voiceprints and
speech content. Most existing methods focus on speaker voiceprint
protection using signal processing (SP)-based and ML-based anony-
mization methods. SP-based approaches typically involve random
perturbations of speech features like MFCC, pitch, and tempo [57],
or employ uniform transformations [79]. However, these methods
often suffer from limited generalizability on out-of-domain speech,
leading to compromised quality and unnatural speech output. ML-
based strategies include employing TTS/VC systems for voiceprint
alteration [32] or mapping speeches to an anonymized and aver-
age voiceprint style [6, 77]. Additionally, adversarial examples (AE)
have proven effective in misguiding traditional speaker verifica-
tion systems [19]. Yet, none of these approaches adequately protect
speech content, particularly from human auditory analysis. While
Preech [2] considers protecting partial content privacy by using
an extra local ASR model to substitute sensitive words, it may fail
to identify sensitive content in noisy environments. Moreover, its
TTS/VC-based dummy word injection strategy results in an un-
natural blend of genuine and synthesized speech segments, which
could hinder deepfake detection efforts.

Our Approach. SafeEar fills a critical void in the realm of
privacy-preserving audio deepfake detection. It ensures the confi-
dentiality of content by decoupling semantic and acoustic tokens,
subsequently shuffling the latter to provide a dual layer of protec-
tion. Employing solely shuffled acoustic tokens, SafeEar effectively
detects deepfakes through the implementation of real-world codec
augmentation strategies.

10 CONCLUSION
In this paper, we investigate the intersections of deepfake detec-
tion and privacy preservation. Specifically, we introduce SafeEar, a
novel framework that realizes effective audio deepfake detection
while preserving speech content privacy. The key idea of SafeEar
lies in decoupling speech information into discrete semantic and
acoustic tokens, and further adopting the shuffling method to form
a dual protection against machine and human analysis. We enhance
the acoustic-only deepfake detector with optimal MHSA’s heads
and real-world codec augmentation to enable effective deepfake
detection only based on the shuffled acoustic tokens. The efficacy
of SafeEar is validated through extensive testing on our established
benchmark, achieving an EER of 2.02%. It can also protect mul-
tilingual content from a series of content recovery adversaries, as
evidenced by the 93.9% WERs alongside our user study.
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A AUDIO CODEC
Audio codecs are widely used in the real-time communication tools
and media softwares, which compress and decompress audio data

from a live stream media (such as radio) or an already stored data
file. The purpose of using an audio codec is to effectively reduce
the size of an audio file without affecting the quality of the sound.
There are two categories of audio codecs:

Traditional codecs: traditional digital signal processing (DSP)
codecs, such as MP3 [62], Opus [71], AAC [7], G.722 [47] and Ogg
Vorbis [16], are integral in telecommunications, streaming, and
broadcasting. These codecs utilize mathematical techniques, e.g.,
subband modulation [47], psychoacoustic modeling [7, 62], and
transform coding [78], to remove audio components that are less
likely to be perceived by the human ear to achieve compression.
Although traditional DSP codecs remain widely used due to their
compatibility and ease of use, they face limitations, such as sub-
optimal compression efficiency and compromised quality at low
bitrates.

Neural Codecs: compared with traditional codecs, neural audio
codecs, such as Encodec [17] and SoundStream [89], offering multi-
aspect advantages, including audio type-agnostic and real-time
operation that can effectively encode and decode various sound
types, e.g., clean, noisy and reverberant speech, music and envi-
ronmental sounds, with no additional latency. The most significant
feature is their state-of-the-art sound quality over a broad range
of bitrates. Traditional codecs introduce coding artifacts at poor
network connectivity (i.e., low bitrates), while neural codecs [17]
can operate even at low bitrates from 1.5kbps to 24kbps, with a
negligible quality loss. This attributes to its training with structured
multi-layer residual vector quantizers (RVQs).

Pioneered by VQ-VAE [72], the RVQ concept for discrete speech
representation has inspired a new paradigm in codec-based audio
generation, exemplified by models like AudioLM [8], VALL-E [74],
and USLM [93]. The codec efficiently encodes speech into fixed-
dimension tokens for further application in TTS and VC domains.
We make the first attempt to design neural codec-based discrete
tokens for deepfake detection, where our distinctive contribution
lies in the design of a decoupling strategy for semantic and acoustic
tokens within RVQs. This strategy is pivotal for enabling SafeEar to
execute privacy-preserving detection without semantic information
leakage.

B SPEECH CONTENT RECOGNITION
An automatic speech recognition (ASR) system aims to transcribe
the speech contents from audio samples. It functions by first seg-
menting the audio input into discrete frames and carefully extract-
ing speech features; then employs probabilistic models to assign
likelihoods to each frame’s features that designate potential corre-
spondences with specific phonemes or words. This vital process
decodes the feature representation flow of speech inputs through
to the output of textual transcription. As for the forms of speech
features, they have evolved through significant shifts, pivoting from
mathematically crafted Filter Bank (FBank), Constant-Q, Linear-
frequency, and Mel-frequency cepstral coefficients (CQCC, LFCC,
andMFCC), using neural encoders to learn suitable speech represen-
tations, as well as employing self-supervised models like Wav2Vec2
and Hubert. There has also been a marked enhancement in the prob-
abilistic models used in ASR systems, evolving from DNNs [27],
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to long-short term memory networks (LSTM) [22], and on to Con-
formers [24]. This progression has substantially strengthened the
model’s capability to represent the probabilistic transitions between
phonemes (i.e., from features to text).

C LOSS FUNCTIONS OF CODEC-BASED
DECOUPLING MODEL

To better decouple the semantic and acoustic information of the
input audio, we introduce multiple loss functions, including distil-
lation loss, reconstruction loss, perceptual loss derived from the
discriminator, and RVQ commitment loss.

The purpose of distillation loss is to extract semantic informa-
tion from the audio. And then we aim to modify the first quantizer
(VQ1) to capture the semantic information from speech, serving a
content-centric role. Specifically, we introduce a knowledge distil-
lation approach, i.e., employing the well-established HuBERT [28]
as our semantic teacher of VQ1. Since HuBERT can well represent
given speech as semantic-only features [48], we employ the average
representation across all HuBERT layers as the semantic supervi-
sion signal that encourages the semantic student VQ1 to learn a
very close content representation via:

L𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
1
𝑇𝑛

𝑇𝑛∑︁
𝑡=1

log𝜎 (cos (W · S𝑡 ,H𝑡 )) (4)

where S𝑡 and H𝑡 respectively denote the 𝑡𝑡ℎ quantized output,
i.e., 𝑡𝑡ℎ token frame of the VQ1 and the HuBERT. cos(·) is cosine
similarity. 𝜎 (·) denotes sigmoid activation. W is the projection
matrix.

The reconstruction loss consists of two parts: the time domain
and the frequency domain. In the time domain, the aim is to mini-
mize the L1 distance between the original audio 𝑋 and the recon-
structed audio 𝑋 . In the frequency domain, on the other hand, we
take a more nuanced approach that involves a linear combination
of L1 and L2 losses on the mel-spectrogram at different time scales.
This approach aims to capture and minimize the difference in fre-
quency characteristics between the target and generated audio.
Formally, the reconstruction loss can be expressed as:

Lrec =
∑︁
𝑖∈𝑒

(
M𝑖 (𝑋 ) −M𝑖 (𝑋 )


1+

M𝑖 (𝑋 ) −M𝑖 (𝑋 )

2)+| |𝑋−𝑋 | |1,

(5)
where M𝑖 (·) denotes the mel-spectrogram using STFT with differ-
ent window sizes 2𝑖 and hop sizes 2𝑖//4, 𝑖 ∈ [5, 11].

We introduce the adversarial loss to learn the features of real
audio more efficiently and thus generate high-quality audio under
different discriminator evaluations. This strategy not only improves
the realism of the generated audio but also enhances the robustness
of the model in complex audio generation tasks. Specifically, we
compute the losses of multiple discriminators and perform time
averaging to obtain a combined adversarial loss value. Formally,

this adversarial loss can be expressed as:

LG =
1
𝐾

𝐾∑︁
𝑘=1

max
(
1 − 𝐷𝑘 (𝑋 ), 0

)
, (6)

LD =
1
𝐾

𝐾∑︁
𝑘=1

max (1 − 𝐷𝑘 (𝑋 ), 0) +max
(
1 + 𝐷𝑘 (𝑋 ), 0

)
, (7)

where 𝐾 denotes the number of discriminators 𝐷𝑘 (·). In addition,
we also add a relative feature matching loss [18] to the generator:

Lfeat (𝑋,𝑋 ) =
1
𝐾𝐿

𝐾∑︁
𝑘=1

𝐿∑︁
𝑙=1

𝐷𝑙
𝑘
(𝑋 ) − 𝐷𝑙

𝑘
(𝑋 )


1

mean
(𝐷𝑙

𝑘
(𝑋 )


1

) , (8)

where 𝐿 denotes the number of layers in discriminators.
For the RVQ, we introduce a computation of the commitment

loss L𝑐 between the pre-quantized and quantized values. Note that
the quantized values do not compute the gradient. This training
objective can be formulated as follows:

L𝑐 =
𝑖=1∑︁
𝑁𝑞

∥z𝑖 − 𝑞(z𝑖 )∥22 (9)

In summary, the DCM model’s generator part is trained to opti-
mize the following loss:

Lgen = 𝜆dLdistill + 𝜆rLrec + 𝜆GLG + 𝜆fLfeat + 𝜆cLc (10)

where we set coefficients similar to HiFiGAN [35], with specific
values 𝜆d = 1, 𝜆r = 1, 𝜆G = 3, 𝜆f = 3, 𝜆c = 1.

D TANDEM DETECTION COST FUNCTION
(T-DCF)

The tandem Detection Cost Function (t-DCF) provides a metric
for assessing the efficiency of deepfake countermeasures under
varied conditions, especially in the realm of speaker verification
systems. It effectively combines the impact of misses (i.e., failing to
detect a genuine attempt) and false alarms (i.e., incorrectly flagging
a deepfake attempt as genuine) into a single cost figure. The t-DCF
is calculated using the following equation:

t-DCF = 𝐶𝑚𝑖𝑠𝑠 · 𝑃cm𝑚𝑖𝑠𝑠 · 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 +𝐶𝑓 𝑎 · 𝑃
cm
𝑓 𝑎

· (1 − 𝑃𝑡𝑎𝑟𝑔𝑒𝑡 ) (11)

In this equation, 𝐶𝑚𝑖𝑠𝑠 and 𝐶𝑓 𝑎 represent the cost of misses
and false alarms, respectively. 𝑃cm

𝑚𝑖𝑠𝑠
denotes the miss rate of the

countermeasure, 𝑃cm
𝑓 𝑎

signifies the false alarm rate, and 𝑃𝑡𝑎𝑟𝑔𝑒𝑡
represents the a priori likelihood of encountering a genuine target
trial in a speaker verification scenario. This cost function reflects the
weighted importance of error rates in the decision-making process
of a system, offering a nuanced view of the practical performance of
countermeasure mechanisms against deepfake attempts in speaker
authentication.
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